Например, Бобцов

ОТНОСИТЕЛЬНЫЙ ПОРЯДОК ДИСКРЕТНЫХ МОДЕЛЕЙ ЛИНЕЙНЫХ СТАЦИОНАРНЫХ СИСТЕМ

Аннотация:

Рассматривается вопрос о изменении ранга матричного старшего числителя передаточной функции дискретной модели многомерной линейной стационарной системы при стремлении к нулю шага дискретизации. Модель строится в предположении, что входное воздействие кусочно-постоянно. Показано, что при всех достаточно малых значениях шага ранг рассматриваемого коэффициента максимален, если выполнено естественное условие невырожденности исходной непрерывной системы-прототипа. В частности, если размерности входа и выхода системы совпадают, то в результате дискретизации с достаточно малым шагом получается дискретная модель с невырожденным старшим коэффициентом. Это свойство играет важную роль при решении многих задач теории управления. Например, классический критерий расщепляемости (decouplability) линейныхсистем требует невырожденности интерактора системы, а для систем с невырожденным старшим коэффициентом это условие выполняется автоматически. Другие примеры приведены в работах по построению минимаксных регуляторов. Однимиз первых шагов синтеза оптимального регулятора дискретных систем общего вида служит искусственное приведение системы к такой форме, что ранг старшего коэффициента максимален. Показано, что этот шаг лишний, если дискретный объект управления получен в результате дискретизации невырожденной системы. Приведен пример дискретной модели асинхронного электродвигателя.

Ключевые слова:

Статьи в номере